If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+30x-48=0
a = 6; b = 30; c = -48;
Δ = b2-4ac
Δ = 302-4·6·(-48)
Δ = 2052
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2052}=\sqrt{36*57}=\sqrt{36}*\sqrt{57}=6\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-6\sqrt{57}}{2*6}=\frac{-30-6\sqrt{57}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+6\sqrt{57}}{2*6}=\frac{-30+6\sqrt{57}}{12} $
| 0=3d | | 2(x-2)+5=3(x+1) | | 9x-2(x-3)=15+7 | | -3=3-3y | | 4x-2+8x-12=180 | | 4x^2-18=46 | | 8y-7=7y+7 | | 9.t=-48 | | 16y+6+10(18.2-1.8y)=180 | | 3=-i+2 | | 17x-127=10x+55 | | 11=-4m-1 | | 16z+12=49. | | 1,5a+9=2,4a | | 8x+7+6x-6+74+x=360 | | a+34=2a | | 25=-5z | | (x+40)(x+66)=180 | | 1+m/2=-4 | | 16x=41/2 | | x+40x+66=180 | | x/2=3x/4-4 | | -11=8-m/3 | | 5x^2+13=500 | | 500000+2x=100000+10x | | 2x-8+112+100+3x-8+3x=360 | | -1=-4+n/4 | | 11x+40=5x+25 | | x+9=94 | | x=18.2-1.8(4) | | x+x+15+67+104+2x+2=360 | | -2=-8-2x |